Model Question of HSC Examination 2020

Higher Mathematics 1st Paper (Creative) Subject Code: 2 6 5

Time - 2 hours 35 minutes

Full marks - 50

[N.B.—Right marking indicate the full marks, taking at least two from each group answer the five questions]

Group A - Algebra & Geometry

1.
$$\triangle A = \begin{bmatrix} p+q+2r & p & q \\ r & q+r+2p & q \\ r & p & r+p+2q \end{bmatrix}, B = \begin{bmatrix} x & 3 \\ 6 & 3 \end{bmatrix}$$

are two matrices.

a. If the matrix B is singular, then find the value of x. 2

b. Show that,
$$|A| = 2(p + q + r)^3$$

c. If
$$p = q = r = 1$$
, then find A^{-1}

2.
$$\overrightarrow{P} = 3\hat{i} - 6\hat{j} + 2\hat{k}$$
, $\overrightarrow{Q} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ are two vectors.

a. If
$$A(2, -1, 3)$$
 and $B(3, 2, -4)$, then find \overrightarrow{AB} .

b. Find the included angle between
$$\overrightarrow{P}$$
 and \overrightarrow{Q} .

c. Find the unit vector perpendicular to vectors P and

3. Stem-1: $x^2 + y^2 + 2x + 3y + 1 = 0$

Stem-2: $x^2 + y^2 + 4x + 3y + 2 = 0$ are equation of circles.

- a. Find the equation of a circle with center (-2, -3)
 and touches the x-axis.
- b. Find the equation of tangent of stem-1 drawn from the origin.
- c. Find the equation of common chord of stem-1 & stem-2.
- 4. ▶ 'AMERICA' is the super power in the world.
- a. If ${}^{n}c_{8} = {}^{n}c_{3}$, then find the value of ${}^{n}p_{8}$.
- b. Find the number of arrangements of the letters of the quoted word taken all at a time.
- c. How many ways can the letters of quoted word be arranged by taking 3 letters at a time?

 4

Group B - Trigonometry & Calculus

5. Stem-1: A cyclist reached Dhaka from Gazipur and these two places originate an angle 18 in the center

of the earth. The radius of the earth is 6440 km.

Stem-2: $f(\theta) = \cos\theta$; when $-360^{\circ} \le \theta \le 360^{\circ}$.

Write down the formula to find period and find the

period of
$$\cot \frac{3x}{2}$$
.

b. Find the distance between two places.

c. Draw a graph of $f(\theta)$ with procedure.

6. ▶

Where, $\angle A + \angle B + \angle C = \pi$

a. Prove that,
$$tan(A + B) + tanC = 0$$
.

Show that, $\sin^2 A + \sin^2 B - \sin^2 C = 2\sin A \sin B \sin C$. 4

c. If $\cot A + \cot B + \cot C = \sqrt{3}$ then prove that, the triangle is equilateral.

4

7. Stem-1: $y = 4x^3 + 3x^2 - 6x + 3y + 1$ is the equation of a curve.

Stem-2:
$$f(x) = (x^x)^x$$

a. Find the value of
$$\lim_{x\to\alpha} \left(1+\frac{1}{x}\right) \left(\frac{5x^2-1}{x^2}\right)$$

- b. Find the coordinates of the points on the stem-1,
 where tangents are parallel to x-axis.
- c. Differentiate f(x) with respect to x. 4
- 8. Stem-1 : $f(x) = e^x \sin 2x$

Stem-2: $y^2 = 16x$ and $x^2 = 16y$ are two parabolas.

- a. What is the integrating value of $\int \frac{\tan(\sin^{-1}x)}{\sqrt{1-x^2}} dx$? 2
- b. Find the integration of $\int f(x) dx$ using stem-1.
- c. Find the area bounded by the two parabolas using stem-2.

Time — 25 minutes

Full marks — 25

[N.B. Choose the best answer among the options. Fill the circle in the answer sheet with ball point pen. Each question has value 1.]

1. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$

the value of AB is -

eachil

For what value of p, the matrix $\begin{bmatrix} p & -5 \\ 4 & 5 \end{bmatrix}$

will be a singular matrix?

- 4
- **ⓑ** 5
- © -4
- @ -5
- 3. If $A = \begin{bmatrix} 5 & -4 \\ 0 & 3 \end{bmatrix}$ then,
 - i. the minor of -4 = 6
 - ii. cofactor of 3 = 6
 - iii. |A| = 39

Which one is correct?

- @ i & ii
- **ⓑ** ii & iii
- © iii & i
- @ i, ii & iii
- The angle between the vectors 3i and 6i is-
 - @ 0°
 - **ⓑ** 300
 - © 90°
 - @ 180°
- Whta is the value of $(j \times i).k = ?$ when i, 5. j & k are unit vectors.
 - (a) -1
- (b) 0

© 1

- (D) i
- Perpendicular distance from the origin 6. to the line 8x + 6y + 25 = 0 is —
 - (a) 0

- © 5/2
- @ 2/5

- The radius of the circle $x^2 + y^2 6x + 9$
 - (a) 3.
 - (b) 2
 - @ 1
 - @ 0
- 8. Which is the center of circle $(x-2)^2$ + $(y+3)^2=25$?
 - @ (0,0)
 - ⓑ (2, -3)
 - © (-2,3)
 - @ (3, 5)

Answer the questions 9 & 10 based on the stem:

 $x^{2} + y^{2} - 8x - 6y + k = 0$ is a circle.

- 9. For what value of k, the given equation touches the y-axis?
 - @ 4
- 6 5
- @ 9
- @ 15
- 10. After putting the value of k the radius of circle is -
 - (a) 4
 - **6** 9
 - © 16
 - @ 18
- 11. if "P1 = 240 and "P1 = 120 then, what is the value of r?
 - @ 1
- (b) 2

- 12. If $\sec\theta = 3$, then which one is the value of tane?
 - ⓐ $\pm 2\sqrt{2}$
- © ±√10
- (d) $\sqrt{10}$

Answer the question 13 & 14 from the stem. An arc of a circle with radius 10 cm. subtends an angle of 30° at the center of the circle.

- 13. What is the length of arc?
 - (a) 2 cm
- (b) 2.62 cm
- © 5 cm
- d) 5.24 cn

14.	Which	one	is the	area	of sector?

- 52.36 sq.cm
- © 13.08 sq.cm
- @ 6.54 sq.cm

15. If $\pi < \theta < \frac{3\pi}{2}$, $\tan \theta = \frac{1}{2}$, then

- The position of revolving line of making angle in 3rd quadrant.
- ii. $\sin\theta = -\frac{1}{\sqrt{5}}$
- iii. $\sec\theta = -\frac{3}{\sqrt{5}}$

Which one is correct?

- @ i & ii
- (b) ii & iii
- © iii & i
- @ i, ii & iii

16. Which one is the value of

$$\sin^2\frac{\pi}{8} + \sin^2\frac{5\pi}{8}?$$

- (a) 1
- \bigcirc 1/2

@ 0

17. If
$$f(x) = 2x - 3$$
 and $g(x) = x^2 - 2$, then $gof(-5) = ?$

- @ 43
- (b) 167
- © -43

18. If $f(x) = \frac{x-3}{2x-1}$, $x \neq \frac{1}{2}$, then the value of

f⁻¹ (-2) is—

- @ -1
- ⓑ − 1/5
- © 1/5
- @ 1

19. The value of $\lim_{x\to 0} (e^x - 1)/x$ is—

- a 1
- ⊕ 0
- © 1
- @ 2

- 20. Limiting value of $\lim_{x\to x} \frac{3^x 3^{-x}}{3^x + 3^{-x}}$ is
 - (a) 0
 - (b) 1
 - © 2
 - (d) 3
- 21. If $y = x^3 12x$, what is the value of x? when $\frac{dy}{dx} = 0$.
 - (a) 0
 - (b) ± 2
 - © 2
 - @ 4
- 22. Differentiation of ax with respect to x is
 - a xlna

 - (b) $a^x l n x$ (c) $\frac{1}{a^x l n} a$
- Derivative of ln(1+ex) with respect to x

 - (a) $\frac{13}{1 + e^x}$ (b) $\frac{e^x}{(1 + e^x)^2}$
 - $\bigcirc \frac{e^x}{1+e^{2x}}$ $\bigcirc \frac{e^x}{1+e^x}$
- 24. Which one is the value of integration]
 - @ 6+c

 - $\odot \frac{1}{6} + c$
 - (d) x/6 + c
- 25. The value of ∫ sin² xdx is
 - $a \frac{\pi}{4}$
- $\odot \frac{\pi}{3}$

 $\odot \frac{\pi}{2}$

(d) π

IS.	1	(a)	2	©	3	©	4	a	5	(a)	6	0	7	(1)	8	(b)	9	(b)	10	(3)	11	(b)	12 25	(a)	13	(1)
Ar	14	(b)	15	(3)	16	(1)	17	6	18	(1)	19	©	20	(b)	21	6	22	a	23	0	24	(1)	25	(8)		