Model Question of HSC Examination 2020

Higher Mathematics 2nd Paper (Creative) Subject Code: 2 6 6

Time - 2 hours 35 minutes

Full marks - 50

[N.B.—Right marking indicate the full marks, taking at least two from each group answer the five questions]

Group A - Algebra & Trigonometry

- 1. \triangleright z = px + qy; Constraints: x + y \le 7, 2x + 5y \le 20, x \ge 0, y \ge 0
- a. Find the square root of 2i.

b. If p = 3, q = 4 find the maximum value of z using graph. 4

c. Show that $4(x^2 - y^2) = \frac{a}{x} + \frac{b}{y}$, if $\sqrt[3]{a + ib} = z$ when p = 1 and q = i.

a. Show that, the roots of the equation $x^2 - (a + b) x + \frac{1}{2} (a^2 + b^2) = 0$ cannot be real unless a = b.

b. If the difference of the roots of (i) is 1, show that $p^2 + 4q^2 = (1 + 2q)^2$

c. If one of the roots of (iii) is double one of the roots of (ii), show that, either 2a - c = 0 or, $(2a + c)^2 - 2b^2 = 0$.

3. \blacktriangleright A = $(a + 3x)^n$, B = $(1 - 4x)^{-\frac{1}{2}}$

a. If $y = x + x^2 + x^3 + \dots$ then show that $x = y - y^2 + y^3 - y^4 + \dots$

b. Show that, the co-efficient of x^r in the expansion of B is

(2r)!

4

https://teachingbd24.com

- c. If in the expansion of 'A' 1st three terms are respectively b, $\frac{21}{2}$ bx and $\frac{189}{4}$ bx², find the value of a, b and n.
- 4. $\triangleright f(x) = \cos x$

a. If
$$\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$$
, show that $x^2 + y^2 = 1$.

b. Solve:
$$f(\theta)$$
. $f(2\theta)$. $f(3\theta) = \frac{1}{4}$; $0 < \theta < \pi$

c. If
$$f(\pi \sin \theta) = \sin \{\pi f(\theta)\}$$
, show that $\theta = \pm \frac{1}{2} \sin^{-1} \frac{3}{4}$.

Group B - Geometry, Mechanics and Probability

5.
$$\triangleright$$
 2x + y = 1..... (i) S₁ = (1, 1), e = $\sqrt{3}$, $\frac{x^2}{p} + \frac{y^2}{5^2} =$

- 1.....(ii), $A \equiv (6, 4)$
- a. The focal distance of a point on the parabola $y^2 = 16x$ is 6, find the co-ordinates of that point.
- For what value of 'p' does (ii) passes through the point 'A'.
 Find the vertex, eccentricity and co-ordinates of the foci of (ii).
- c. Find the equation of the hyperbola whose directrix is (i), focus S₁ and eccentricity be 'e'.
- 6. Scenery-I: Three forces P, Q, R acting at a point are in equilibrium and the angle between P and Q is double the angle between P and R.

Scenery-II: Two unlike parallel forces P, Q (P > Q) act at A and B respectively. If P and Q are both increased by R and distance is 'd'.

a. Write down Lamy's Theorem.

b. From Scenery-I, prove that $R^2 = Q(Q - P)$.

c. From Scenery-II, show that $d = \frac{R}{P - Q}$, AB

7. \triangleright Scenery-I: A particle moving along a straight line with uniform acceleration describes successive equal distances in times t_1 , t_2 and t_3 .

Scenery-II: A stone falling from the top of a vertical tower has descend x metres when another is let fall from a point y metres below the top. They fall from rest and reach the ground together.

- a. A projectile is projected with an initial velocity of 21 ms⁻¹ at an angle 30° with the horizon. Find the greatest height.
- b. From Scenery-I, Show that $\frac{1}{t_1} \frac{1}{t_2} + \frac{1}{t_3} = \frac{3}{t_1 + t_2 + t_3}$
- c. From Scenery-II, show that the height of the tower is $\frac{(x+y)^2}{4x}$ metres.
- 8. Scenery-I: A, B are independent and $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{4}$

Scenery-II: Two dice are thrown simultaneously.

a. Define sample space.

b. From scenery-I, find P $(A \cup B)$ and P $(A \cap B)$.

c. From scenery-II, write down the sample space and find the probability of appearing two sixes.

Time — 25 minutes

Full marks — 25

[N.B. Choose the best answer among the options. Fill the circle in the answer sheet with ball point pen. Each question has value 1.]

1. Which one is the inf of S =

50	1	1		1			,)	•
('',	2	, 3	,	4	,	•••••	····/}	•

@ 1/2

(b) 0

(d) oc

2. The largest or smallest value of the objective function is called -

- optimal value
- ⑤ optimal solution
- © feasible region
- decision variables

3. What is the solution of $|4x-2| \le 18$?

- (a) -4 < x < 5
- (b) -4 < x ≤ 5
- © $-4 \le x < 5$
- $\bigcirc -4 \le x \le 5$

If $p, q, r \in R$, then

- i. $p+q \in R$, $pq \in R$
- ii. (p+q)+r=p+(q+r)
- iii.p (q + r) = pq + pr

Which one is correct?

- @ i, ii
- (b) ii, iii
- © i, iii
- (d) i, ii, iii

 α , β be the roots of the equation $2x^2 - 10x +$ 15 = 0

From the above information, answer the questions no. 5-6:

5. The discriminant of the above equation is —

- (a) natural
- (b) complex
- © real
- d fraction

 $\sum a^3 = ?$ 6.

- (b) 125
- (d) 475

Which one is the argument of z = 2 -7.

- (a) $-\tan^{-1}\frac{5}{2}$ (b) $\tan^{-1}\frac{5}{2}$ (c) $\pi \tan^{-1}\frac{5}{2}$ (d) $-\pi + \tan^{-1}\frac{5}{2}$

What is the co-efficient of x^8 in $\frac{1-x}{1+x}$?

(a) -1 (b) 0 (d) 2 The ellipse $\frac{x^2}{25} + \frac{y^2}{49} = 1$ has —

i. eccentricity $\frac{2\sqrt{6}}{7}$

ii. length of latus rectum $\frac{50}{7}$ units

iii. foci (±1, 0)

Which one is correct?

- (b) i, ii
- (a) 1, 111 (c) 11, 111
- @ i, ii, iii

General solution of the equation $\sqrt{3}$ $\cos \theta + \sin \theta = 2 \text{ is}$

- (a) $\theta = 2n\pi$ (b) $\theta = (12n 1)\frac{\pi}{6}$
- © $\theta = (12n + 1)\frac{\pi}{6}$ @ $\theta = (4n 1)\frac{\pi}{6}$

11. A pack of 52 cards contains 4 aces. One card is drawn a random. What is the probability of not getting an ace?

12. Two forces 3P and 5P act so that they are perpendicular to each other. What is their resultant?

- @ 3P
- ⓑ 2√2 P
- © √34 P
- ⓐ $\sqrt{43}$ P

13. If x + iy and x - iy are complex numbers, then their -

- i. sum is real
- ii. product is real
- iii.difference is real

Which one is correct?

- (a) i, ii
- (b) ii, iii
- © i, iii
- @ i, ii, iii

14.	If e	> 1.	then	what	type	of	conic is
2012	form						
	@ cir			(b)	parat	oola	
	© ell			(b)	hype	rbol	a
15.				1			$y = \sin$
	(2ta	n-1 2	12				

$$(2\tan^{-1}\frac{2}{5})$$
?
(a) $\frac{20}{29}$ (b) $\frac{20}{21}$

ⓐ
$$\frac{20}{29}$$

ⓑ
$$\frac{20}{21}$$

©
$$\frac{21}{20}$$

$$a \frac{29}{20}$$

i. horizontal range,
$$R = \frac{u^2 \sin 2\alpha}{g}$$

ii. time of rise =
$$\frac{u \sin \alpha}{g}$$

iii.
$$R_{max} = \frac{u^2}{g}$$

Which one is correct?

17.
$$\frac{5x}{(2-3x)(1-x)} = ?$$

(a)
$$\frac{-5}{1-x} - \frac{10}{2-3x}$$
 (b) $\frac{5}{x-1} + \frac{10}{2-3}$

$$\odot \frac{-5}{1-x} + \frac{10}{2-3x}$$

$$\odot \frac{-5}{1-x} + \frac{10}{2-3x}$$
 @ $\frac{5}{1-x} + \frac{10}{2-3x}$

18. Solution of
$$tan\theta + cot\theta = 2$$
 is

$$\left(0^{\circ} < \theta < \frac{\pi}{2}\right)$$

$$\odot \frac{\pi}{6}$$

$$\odot \frac{\pi}{4}$$

$$all \frac{\pi}{3}$$

A particle starting with velocity u moves for 5 sec. With constant acceleration f describes 90 metres the acceleration then ceases and

describes 80 metres during the next 5 sec. From the above information, answer the question no. 19-20

19. What is the final velocity (v)?

- (a) 16ms⁻¹
- (b) 17ms
- © 18ms⁻¹
- @ 20ms-1

What is the value of 'u'? 20.

- 16ms⁻¹
 18ms⁻¹
- ⓑ 17ms⁻¹
- @ 20ms-1

21. Which one is the range of $y = tan^{-1} x$?

(a)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\odot$$
 $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$

©
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 @ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

22. If P, Q, R make angles α, β, θ respectively with OX then

i.
$$R \cos\theta = P \cos \alpha + Q \cos\beta$$

ii.
$$R \sin\theta = P \sin \alpha + Q \sin \beta$$

$$iii.R = P + Q$$

Which one is correct?

@ i

(b) ii

@ i, ii, iii

The parabola $y^2 = 4Px$ passes through the points (3, -2).

From the above information, answer the questions no. 23-24:

23. What is the value of 'P'?

What is the co-ordinates of focus? 24.

ⓑ
$$\left(0, -\frac{1}{3}\right)$$

$$\odot \left(0,\frac{1}{3}\right)$$

$$\odot \left(0,\frac{1}{3}\right)$$
 $\odot \left(\frac{1}{3},0\right)$

25. If one root of the equation $x^2 - 8x - P$ = 0 is 6 then P = ?

- (a) 12
- \bigcirc -8

© 8

@ 12