Model Question of HSC Examination 2020 (All Board)

Sub: Physics 1st paper (Creative)

Sub Code : 1 7 4

Time — 2 hours 35 minutes

Full marks: 50

[Answer any five questions.]

1. \ Observe the figure and answer the following questions:

$$\overrightarrow{A} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{B} = 2\hat{i} + 3\hat{j} + 6\hat{k}$

- a. What is Position Vector?
- b. Explaun Curl of a Vector quantity?
- c. Fine the magnitude of Θ_1 according to stem.
- d. According to stem, $\theta_1 = \theta_2$ is possible or not— Justified it mathematically.
- 2. ► A thin uniform rod of mass 1.75 kg and length 25 cm is rotating around a central axis.
- a. What is called angular velocity?
- Explain the relation of torque with moment of inertia & angular acceleration.

c.	If the axis of rotation goes through the middle point of the													
rod find the moment of inertia.														
d.	If the axis of rotation is at a distance two-third from one													
	end of rod then determine its moment of inertia & radius of													
	gyration. 4													
3.	An artificial satellite is revolving around the earth from a													
height of 690 km from the ground. The radius of the earth is														
6.4×10^3 km & its mass 6×10^{24} kg. $G = 6.67 \times 10^{-11}$ N m ² kg ⁻² .														
a.	State Kepler's second law of planetary motion.													
b.	Write down the difference between conservative force and													
	non conservative force?													
c.	Determine the horizontal velocity of the satellite?													
d.	What will be the change in the time period if the satellite is													
	removed to a height of 800 km above the surface of the													
	earth? Explain with mathematical analysis. 4													
4 . [At normal temperature & pressure the density of oxygen													
gas	is 1.25 kgm ⁻³ . According to kinetic theory of gas the													
velo	ocity of the molecules increases with temperature.													
a.	What is an ideal gas?													
b.	The temperature of air is 30° and dew point is 20°C what													
	does it mean?													
c.	Calculate the root mean square velocity at 100°C													
	Temperatures?													

- d. If the root mean square velocity of the gas is made 5 times then what will be the change of temperature? Explain mathematically.
- 5. Two iron balls of radius 2×10^{-4} m and 3×10^{-4} m are allowed to fall through tarpin oil. After attaining the terminal velocity the small ball travels 24 cm in 3.2 s. Densities of tarpin oil and iron are respectively 0.87×10^3 kgm⁻³ and 7.8×10^3 kgm⁻³ and the coefficient of viscosity of tarpin oil is 1.5 $\times 10^3$ Nm⁻².
- a. State Hooke's law.
 - b. Steel is more elastic than rubber— Explain. 2
 - c. Calculate the viscous force on small sphere after it has attained terminal velocity.
- d. Which sphere will fall first? Give justification of your answer.
- a. What is progressive wave?
- b. Explain nodes & antinodes with diagram.
- c. In the above stem, find the frequency of the wave.

d.	Is the created wave audible? Justify by determining	the
	intensity levels.	4
7.	▶ Using two engines of 27.36 HP & 3.65 HP, water of 10	000
kg	is taken above 100m and 10m in 1 min.	
a.	Define instantaneous velocity.	1
b.	Impulse of force is equal to the change of momentum	-
	Explain.	2
c.	Calculate the output power of the second engine?	3
d.	Show that in the second engine, 20% more energy	is
	wasted than that of the first engine.	4
8.	A second pendulum gives right time on the earth surface	ce;
the	pendulum is taken to a satellite whose radius is $\frac{1}{4}$ times the	hat
of e	earth & mass is $1/50$ times. The mass of earth is 6×10^{24} kg	
	What is phase?	1
b.	Why does a pendulum clock go slow during sumn	ner
	season— explain?	2
c.	Calculate the acceleration due to gravity on the surface	of
	the satellite.	3
d.	The simple pendulum will move slower on the surfa-	ace
TX.	satellite than that on the earth surface. Verify the statement	ent
	with mathematical analysis.	4

https://teachingbd24.com

Model Question of HSC Examination 2020 (All Board)

Sub - Physics (MCQ)

Subject Code: 1 7 4

Time: 25 Minutes

Full Marks: 25

[N.B. Fill the circle of the correct answer with a black ball point pen. Each question bears I mark.]

- For dot and cross product, the range of angle between two vectors is—
 - (a) $0^{\circ} \le \alpha \le \pi$
- ⓑ 0° < $\alpha \leq \pi$
- © $0^{\circ} \le \alpha < \pi$
- $0^{\circ} < \alpha < \pi$
- When a solid cylinder of 5cm radius is rotating on its own axis, what will be its radius of gyration?
 - @ 6.15cm
- (b) 5.25cm
- © 3.5cm
- @ 2.5cm
- 3. What is the work done by the centripetal force?
 - a 0
- (b) +ve
- © -ve
- d) 1
- 4. If the smallest division of main scale is 1mm and no of vernier division is 20, what is the vernier constant?
 - @ 0.5mm
- ⓑ 20mm
- © 0.05mm
- @ 0.005mm
- 5. For which condition, incoming & outgoing flux of liquid is equal?
 - ⓐ Div V = (+ve)
 - ⓑ Div V = (-ve)
 - © Div V = 0
 - d Div $V = \infty$
- 6. What is the magnitude of F = 5i + 2j - 3k on XZ plane?

 - © √34
 - (d) $\sqrt{38}$
- 7. A football was kicked at an angle of 30° with the ground and with 30 m/s velocity. What will be the velocity after 1s?

- ⓐ $15\sqrt{3}$ m/s
- ⓑ 5.2 m/s
- © 26.5 m/s
- @ 24.5 m/s
- 8. If acceleration is integrated once with respect to time, what will we get?
 - a Distance
- b Displacement
- © Velocity
- Acceleration
- 9. What is the range of weak nuclear force?
 - @ 10⁻¹⁷
- ⓑ 10⁻¹⁵
- © 10^{30}
- @ 10⁴⁰
- 10. What is the derived quantity?

 - ⑤ Temperature
 - © Atomic quantity of substance
 - d Power
- 11. 1PF = ?
 - @ 10⁻⁹F
- ⓑ 10^{-12} F
- © 10^{-15} F
- 12. What is the distance of the earth from the sun?
 - ⓐ $1.49 \times 10^8 \text{ km}$
 - ⓑ $4.5 \times 10^4 \text{ km}$
 - © 9.46×10^{12} km
 - \oplus 9.46 × 10¹⁵ km
- 13. What is the dimension of gravitational potential?
 - ⓐ $ML^{-2}T^{-2}$
 - ⓑ L²T⁻²
 - © MLT⁻²
 - d ML^2T^{-1}
- 14. The earth moves round the sun in a year at a radius of 1.5×10^{11} m. If the sun's mass is 2×10^{30} kg, then what is the earth's velocity?
 - a 10000 m/s
 - **b** 20000 m/s
 - © 30000 m/s
 - d 40000 m/s

	expand this wire?													i. Amplitude- 10cm														
	② 2 Pa ③ 1 Pa													ii	ii. Wavelength- 20 cm													
	© 0.5 Pa													ii	iii. Wave velocity- 750cm/s													
17.	What is the example of non-														Which one is correct?													
	conservative force?												a	(a) i & ii (b) ii & iii														
	Force of gravity												0	© i & iii d i, ii & iii														
															Angular frequency is—													
	© Electric force															(a) 135 rad/s (b) 314 rad/s												
	Magnetic force													C	© 413 rad/s @ 431 rad/s													
18	W Magnetic Torce														. C	ool	king	g ri	ce (on i	Eve	eres	t sı	ımı	nit	is		
10.	Timut is the average kinetic energy															Cooking rice on Everest summit is tough because of — of water.												
	(a) (.5		5-11-24-5	0							•		high pressure and low boiling point												
	-					-		5 _k T	•7.						6	b high pressure and high boiling point												
19.	© nRT @ 1.5kT Mean free path is—													© low pressure and high boiling point														
					_				to 1	1111	he	r				d low pressure and low boiling point												
	i. inversely proportional to number of mole per unit volume 2											24		What is the maximum rate of														
	ii. inversely proportional to root of												cl	change with respect to position?														
	molecule's diameter														(a) Gradient													
	iii. proportional to pressure and													6	(b) Divergence													
	temperature of gas														© Curl													
	Which one is correct?													100	d Velocity													
														2000	If the square of two same vector's													
	© i & iii														resultant is three times of their													
20.	Ho					200	2377.1520				f a	1			p	rod	uct	, t	hen	w	hat	is	tł	ie :	ang	le		
0.00.00.00									-						_			th										
	simple pendulum has to be changed in order to increase the												а 0°ь 60°															
	tim	_													© 120° @ 180°													
	a) 2							00%)							8 - UCA	DATE:				_	000000000	50.					
	1	a	2	©	3	(3)	4	©	5	©	6	©	7	©	8	©	9	(a)	10	(1)	11	6	12	(a)	13	6		
	14	©	15	(1)	16	6	17	ъ	18	(1)	19	a	20	©	21	©	22	6	23	(1)	24	a	25	©		-		
									<u> </u>	<u>ittp</u>	s://t	teac	<u>:hin</u>	gbo	<u> 124</u>	.coi	<u>m</u>											

© 125%

using the above equation.

21. Comparing with

 $\sin\frac{2\pi}{\lambda}(vt-x).$

@ 225%

the

general

 $Y = 10\sin 2\pi \left(\frac{t}{0.02} - \frac{x}{15}\right) \text{ it's a}$

Answer the question no 21 & 22 by

equation of travelling wave- Y = a

travelling wave. Here length is in cm.

15. If the free surface of water is

16. If the stress and strain of a wire

are 2 Nm⁻² and 1 respectively, what

is the work done per unit volume to

the contact angle?

90° < α < 90°
</p>

(a) $\alpha > 90^{\circ}$

© α < 180°

d α < 90°

concave in capillary tube, what is