Dhaka, Dinajpur, Sylhet and Jashore Boards-2018

Higher Mathematics 2nd Paper (Creative) Subject Code: 2 6

Time — 2 hours 35 minutes

[N.B. The figures in the right margin indicate full marks. Answer five questions taking at least two from each group.]

Group A – Algebra and Trigonometry

1. \triangleright Scenario-1: f(x) = 3x + 1. Scenario-2: |z - 5| = 3

What do you mean by R and C? What is the relation between them?

b. Show that the solution set of $2|f(x-2)| \le 1$ on the real line. 4

c. What does the locus of secnario-2 represent genometrically if z = x + iy? Sketch it.

2. The price of each kg of food F_1 and F_2 and the amount of

vitamin C and D in them are as follows:

Types of food	Vitamin C	Vitamin D	The cost per killo				
$\mathbf{F_1}$	6	2	3				
F ₂	3	5	5				

Write two advantages of Linear Programming.

Daily requirements of C and D are minimum 60 units and b. 50 units respectively. Formulate a linear program to fulfil the daily requirement of vitamins at minimum cost.

Solve the linear programming problem obtained in question no 2(b) graphically to find daily minimum cost.

3. Scenario-1:
$$\frac{1}{x} + \frac{1}{p-x} = \frac{1}{q}$$

Scenario-2: $\left(2x^3 - \frac{1}{x}\right)^{20}$

- a. If p = q = 1, then from scenario-1 find out the nature of the roots.
- b. In scenario-1, if the difference between two roots is r, find out the relation among p, q and r.

Find out the coefficient of x¹² in the expansion of scenario-

4. ▶

Scenario-1:
$$\sin^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) - \cot^{-1}\left(\frac{2}{11}\right)$$

Scenario-2: $4(\sin^2\theta + \cos\theta) = 5, -2\pi < \theta < 2\pi$

- a. Prove that, $2\sin^{-1} x = \sin^{-1} (2x \sqrt{1-x^2})$
- b. Find out the value of scenario-1.
- c. Solve the equation given in scenario-2.

Group B - Geometry, Mechanics and Statistics

5. Scenario-1: $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Scenario-2: $4x^2 - 5y^2 - 16x + 10y - 9 = 0$.

- a. Find out the equation of the directrix of the parabola, $x^2 = -12y$.
- b. If the straight line x y 5 = 0 touches the conic of scenario-1, find out the coordinates of the tangent point. 4
- Express the equation of scenario-2 in a standard form. Find out the length of latus rectum and its equation.

6.

P, Q, R are three like parallel forces acting at the vertices of a triangle ABC.

- a. What is the resultant of two equal forces acting at a point at an angle 60°?
- If the resultant of the forces passes through the incenter of the triangle ABC, show that P: Q: R = sin A: sin B: sin C.
- From the stem, find out the relation among the forces P, Q and R if their resultant passes through the centroid of the triangle ABC.
- 7. ▶ Scenario-1: A train stops at two stations. The distance between the two stations is 4 kilometers and it takes 8 minutes to reach the next station.
- Scenario-2: A particle is moving on a straight line with uniform acceleration whose average velocities are v_1 , v_2 and v_3 at gradual times t_1 , t_2 and t_3 respectively.
- a. Explain the relative velocity.
- b. From scenario-1, if the train moves the first half at the uniform acceleration x and 2nd half at the uniform retardation y, show that x + y = 8xy.
- c. From scenario-2, prove that $\frac{t_1 + t_2}{v_1 v_2} = \frac{t_2 + t_3}{v_2 v_3}$
- 8. Scenario-1: One dice and two coins are thrown simultaneously.

Scenario-2: A frequencey distribution table:

Age (year)	20-30	30-40	40-50	50-60	60-70
Number of labours	25	40	20	10	5

a. If
$$P(A) = \frac{1}{3}$$
 and $P(A \cap B) = \frac{1}{5}$, find out $P(B/A)$?

- b. Find the probability of getting odd numbers in dice constructing the sample space using scenario-1.
- c. Find the standard deviation from scenario-2.

Time — 25 minutes

Full marks — 25

[N.B. Choose the best answer among the options. Fill the circle in the answer sheet with ball point pen. Each question has value 1.]

- Which one is the example of Associative law in the field axioms of real numbers?
 - a. 2+3=3+2
 - b. (2+3)+4=2+(3+4)
 - c. 2+0=2
 - d. 2(3+4)=2.3+2.4
- What is the value of $i^{4n} i + i^{4n+1} 1$, $n \in \mathbb{N}$?

- What is the value of $\sec^2(\cot^{-1}\sqrt{2}) \sin^2(\cos^{-1}1)$?
- b. 1

- the resolved part of P along OA = $\frac{\sqrt{3P}}{2}$
- ii. the resolved part of P along OB = $\frac{1}{2}$
- iii. the resolved part of P along OC = P

Which one is correct?

- a. i and ii
- b. i and iii
- c. ii and iii
- d. i, ii and iii
- Which one is the absolute measure of Dispersion?
 - a. Co-efficient of standard Deviation
 - b. Quartile Deviation
 - c. Co-efficient of Range
 - d. Co-efficient of Mean Deviation
- What is the general solution of $\sin\left(x-\frac{\pi}{2}\right)=0$ for $n\in\mathbb{Z}$?
- b. $2n\pi + \frac{\pi}{2}$

- For the parabola $y^2 = -2x$;
 - i. equation of latus rectum is 2x = 1
 - ii. length of latus rectum is 2 unit
 - iii. co-ordinates of focus is $(-\frac{1}{2}, 0)$

Which one is correct?

- a. i and ii
- b. i and iii
- c. ii and iii
- d. i, ii and iii
- Which one is correct for the event A and its complementary event Ac in probability?
 - a. 0 < P(A) < 1
- b. $0 \le P(A^{c}) < 1$
- c. $0 < P(A^c) < 1$
- d. $0 \le P(A) \le 1$
- What is the value of $2\sin\theta \sin C$ for $A = \sin^{-1}\frac{1}{2}$, $B = \cos^{-1}\frac{1}{2}$ and

the external angle θ of C in \triangle ABC?

- b. 1

- Look at the stem and answer the questions No. 10 and 11:

- 10. Which inequality is true for the straight line AC?
 - a. x > 1
- b. x ≥ 1
- c. y≥-2
- d. y > 1
- 11. Which one is true for the minimum value of z = x y in the feasible region?

- a. -2

- 12. Which one is the solution set of the inequality $|x-1| \le 1$?
 - a. [-1, 1] b. [0, 2]
- c. (0, 2]
- d. (-1, 1]
- 13. Which one is the angle between 1st two of the three forces 1N, 1N and 2N acting at a point in equilibrium?
- b. 90°
- c. 120°

14. Linear Programming needs —

- quardratic equation
- ii. non-negative variables iii. linear inequalities

Which one is correct?

- a. i and ii
- b. i and iii
- c. ii and iii
- d. i, ii and iii
- 15. If a particle be thrown vertically upwards with initial velocity v from the ground, what is the greatest height of the particle?

- 16. What is the another root of a quadratic equation whose one

root is
$$\frac{1}{2-\sqrt{5}}$$
?

- b. $2 \sqrt{5}$ d. $2 + \sqrt{5}$

- 17. What is the velocity of a particle at greatest height of its path after projecting with velocity $\frac{u}{\sqrt{3}}$ at the angle 30°?

- 18. Which function is polynomial?

 - a. $2x^2 5\sqrt{x} + 1$ b. $x^3 \frac{3}{x^2} + 4x + 1$

c. $x^3 + 2x^2 - 3x + x^{-1}$ d. $2x^2 - x + 1$ Answer the questions No. 19 and 20 on the basis of the following stem :

- $\frac{x^2}{3} \frac{y^2}{2} = 1$ is an equation of a conic.
- 19. Which is the eccentricity of the conic?

- 20. Which is the length of latus rectum of the conic?

- 21. What is the probability of a number to be prime as well as even selected randomly from 0, 1, 2, 4, 5 and 10?
- b. $\frac{2}{3}$

- 22. Which sketch is true for the conic $(x-1)^2 = -4y$?

- 23. What is the general argument of 1 √3i?
 - a. $2n\pi \frac{\pi}{3}$; $n \in \mathbb{Z}$
- b. $2n\pi + \frac{\pi}{3}$; $n \in \mathbb{Z}$
- c. $2n\pi \frac{5\pi}{3}$; $n \in \mathbb{Z}$
 - d. $2n\pi + \frac{5\pi}{3}$; $n \in \mathbb{Z}$
- 24. What is the sum of co-efficients of three consecutive terms in the expansion of $-x(1+x)^{-1}$? c. 1

 $-1 + \sqrt{3}i$

- 25. Which one is true for $\alpha =$
- b. $\alpha + \overline{\alpha} = 2\alpha$
- a. $\alpha \bar{\alpha} = \alpha^2$ c. $\alpha + \bar{\alpha} = -1$
- d. $\bar{\alpha} + \alpha^2 = -1$

.5	1	(b)	2	0	3	0	4	(1)	5	(b)	6	a	7	©	8	(1)	9	(b)	10	(b)	11	6	12	(b)	13	a
A	14	©	15	a	16	©	17	©	18	(1)	19	@	20	(1)	21	a	22	a	23	a	11 24	6	25	©		