Dinajpur Board-2017

Higher Mathematics 1st Paper (Creative) Subject Code: 2 6 5

Time — 2 hours 35 minutes

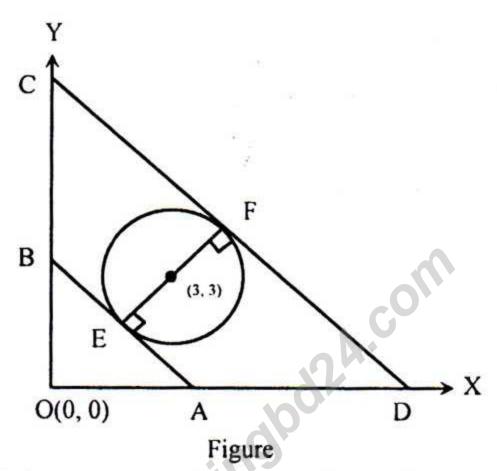
Full marks - 50

[N.B. The figures in the right margin indicate full marks.

Answer five questions taking at least two from each group.]

Group A - Algebra and Geometry

1.
$$M = \begin{bmatrix} 1 & 2 & 1 \\ 3 & -3 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$


a. If
$$\begin{bmatrix} 2 & -x \\ y-1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3+y \\ 4 & 2 \end{bmatrix}$$
 then find (x, y) .

- b. Find $M^2 3M + MI$, where I is an identity matrix. 4
- c. If M⁻¹ exists, find it.

2.
$$\overrightarrow{A} = 2\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{B} = \hat{i} + 2\hat{j} - \hat{k}, \overrightarrow{C} = \hat{i} + b\hat{j} + 3\hat{k}.$$

- a. What do you mean by position vector?
- b. If the component of vector B along A is perpendicular to C, then find the value of b.
- c. Find the angle between the vectors A + B and $A \times B$. 4

3. ▶

- a. Find the centre and radius of the circle, $3(x^2 + y^2) 5x + y + 1 = 0$.
- b. If OA = 4 and OB = 3, then determine the equation of the circle drawn in the figure.
- c. If AB \parallel CD, then find the equation of the circle whose terminal points of diameter are F and D.
- 4. ▶ In a Oneday match NEWZEALAND cricket team consists of 7 batsman, 6 bowlers and 2 wicket keepers.
- a. If ${}^{n}P_{3} = 2 \times {}^{n}C_{4}$, then find the value of n.

- b. How many ways the cricket team of 11 players can be made so as always including 5 bowlers and at least one wicket keeper.
- Find the number of arrangements of the letters of the word NEWZEALAND not keeping the vowels side by side.

Group B - Trigonometry and Calculus

5. \triangleright $f(x) = \sin x$ and $g(x) = \cos x$.

a. If
$$\cos\theta = \frac{3}{\sqrt{13}}$$
, then find the value of $\sqrt{\frac{2 - \cot^2\theta}{2 + \cot^2\theta}}$. 2

b. If f(x) + f(y) = p and g(x) + g(y) = q, then prove that $f(\frac{x-y}{2}) = \pm \frac{1}{2} \sqrt{4 - p^2 - q^2}$.

c. Draw the graph of f(2x) in the interval $-\frac{\pi}{2} \le x \le \pi$ and write one characteristics of it.

6. ► A, B ⊂ ℝ, B = ℝ -
$$\left\{\frac{1}{3}\right\}$$
, g : A → B, g(x) = $\frac{x-5}{3x+1}$ and h(x) = $x^2 + 1$.

- a. Determine the differential co-efficient of sin $e^{\sqrt{1-x}}$.2
- b. Show that (hog)(1) (goh)(2) = 2.
- c. Verify the existence of g⁻¹(x), if g⁻¹(x) exist, then find it.
- 7. $f(x) = \ln x$ and $g(x) = e^x$.
- a. Find the value of $\lim_{x \to 0} \frac{e^{2x} 1}{ax}$.
- b. Determine the maximum and minimum value of $\frac{f(2x)}{x}$ if it exists.
- c. Evaluate $\int_{1}^{e^2} \frac{f(x)}{x} dx + \int_{1}^{2} g(x) dx$.
- 8. \square g(z) = mz sin⁻¹ z is a function and $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ is a curve.
- a. Find the value of $\int_{1}^{2} \frac{1}{z} \cos(\ln z) dz$.
- b. Integrate $\int g(x) dx$.
- c. If b > a then find the half area of the region bounded by the curve given in the stem.

Time — 25 minutes

Full marks - 25

[N.B. Choose the best answer among the options. Fill the circle in the answer sheet with ball point pen. Each question has value 1.]

Which one of the following is correct?

- a. $\sin(-\theta) = \sin\theta$
- b. $\cos(-\theta) = \cos\theta$
- c. $tan(-\theta) = tan\theta$
- d. $\cot(-\theta) = \cot\theta$

The angle between the vector $2\hat{i} + 3\hat{j} - 6\hat{k}$ and the y-axis is —

- a. $\cos^{-1}\left(\frac{2}{7}\right)$
- b. $\cos^{-1}\left(-\frac{2}{7}\right)$
- d. $\cos^{-1}\left(-\frac{6}{7}\right)$

The period of the function y = cosx is -

- b. #

i. ${}^{n}P_{n} = n!$ ii. ${}^{n}C_{r} = {}^{n}C_{n-r}$ iii. ${}^{n}P_{r} = {}^{n}C_{r} \times r!$

Which one of the following is correct?

- a. i and ii b. i and iii c. ii and iii d. i, ii and iii
- The value of $\lim_{x\to\infty} \frac{4+3x-x^2}{7+2x+3x^2}$ is —

Answer to the questions number 6 and 7 with the help of stem:

4x - 2y = 6

- What is the intersecting point of x axis according to the stem?
 - a. $\left(\frac{3}{2},0\right)$ b. (0,-3) c. (-3,0) d. $\left(0,\frac{3}{2}\right)$

What is the slope to the stem?

- b. $-\frac{1}{2}$
- c. -2

i. There exists an inverse matrix of every non singular matrix

- ii. If A and B are non singular matrices, then (AB)-1 = B-1A-1
- iii. The value of a determinant is changed if the corresponding rows and columns are interchanged

Which one of the following is correct?

- a. iandii b. iandiii c. iiandiii d. i, iiandiii
- The function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^3 + 3$, then which is the value of f-1(11)?
 - a. 2
- b. 2√2
- c. 3
- d. 2√3

10. The number of rearrangements made by the letters of the word 'DIFFERENT' so that the vowels do not change their positions is -

- a. 720
- b. 719
- c. 360

11. For which value of m the vectors P = 4i + mj and

- $Q = 6\hat{i} 4\hat{j} + 3\hat{k}$ are perpendicular to each other?
- b. 6

12. If A and B are two vectors, then -

- i. A+B=B+A
- ii. A.B=B.A
- iii. $A \times B = B \times A$

Which one of the following is correct?

- a. iandii b.iandiii c.iiandiii d.i,iiandiii
- 13. i. The centre of the circle $x^2 + y^2 = a^2$ is at the origin
 - ii. $x^2 + 2y^2 = 4$ is an equation of a circle
 - iii. The circle $(x + 3)^2 + (y 2)^2 = 9$ touches the y-axis

Which one of the following is correct?

- - b. i and iii c. ii and iii d. i, ii and iii
- 14. The number of diagonals of a polygon of sides 16 is
 - a. 240
- b. 224
- c. 120
- 15. The slope of the normal drawn at a point (2, 3) of the curve y $= x^2 - x + 1$ is —

- a. 3 b. -3 c. $\frac{1}{3}$ d. $-\frac{1}{3}$

16. Inverse matrix of $A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ is —

- a. $\begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$ b. $\frac{1}{2} \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$
- d. $-\frac{1}{2}\begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$

Answer to the questions number 17 and 18 with the help of stem: $x^2 + y^2 + 4x - 6y + 1 = 0$

- 17. What is the intersecting part of y axis according to the stem?
 - c. 4\sqrt{2}
- 18. Which one of the following is the radius of the stem?
- b. 3

b. 2√2

- c. 2√3
- 19. In $\triangle ABC$, $\angle A = 90^{\circ}$, $\angle B = 60^{\circ}$ and c = 3 cm, then the length of b is
 - a. 6 cm.
- b. 4 cm.
- c. $3\sqrt{3}$ cm. d. $2\sqrt{3}$ cm.
- 20. The polar co-ordinates of the point $(-1, \sqrt{3})$ is —

a.
$$(2, \frac{\pi}{6})$$
 b. $(2, \frac{\pi}{4})$ c. $(2, \frac{\pi}{3})$ d. $(2, \frac{2\pi}{3})$

- 21. If $\frac{\pi}{2} < \theta < \pi$ and $\sin \theta = \frac{3}{5}$, then the value of $\cos \theta$ is
- a. $\frac{3}{4}$ b. $\frac{4}{5}$ c. $-\frac{3}{4}$ d. $-\frac{4}{5}$

22. The value of $\frac{d^n}{dx^n}(x^n)$ is —

- c. 1
- 23. The area bounded by the ellipse $4x^2 + 25y^2 = 100$ is
 - a. 4π sq. units
- b. 25π sq. units
- c. 10π sq. units
- d. 100π sq. units

ii.
$$\int \sec^2 \frac{1}{2} x \, dx = \frac{1}{2} \tan \frac{1}{2} x + C$$

iii. $\int_a^b \frac{dx}{x} = \ln\left(\frac{b}{a}\right)$

Which one of the following is correct?

- a. i and ii b. i and iii c. ii and iii d. i, ii and iii
- p 2 q+r 25. The value of $\begin{vmatrix} q & 2 & r+p \\ r & 2 & p+q \end{vmatrix}$ is
 - a. 0
- c. pqr
- d. p+q+r

S.	1	b	2	c	3	d	4	d	5	C	6	a	7	a	8	a	9	a	10	d	11	b	12	a	13	b
A	14	d	15	d	16	b	17	С	18	С	19	c	20	d	21	d	9 22	a	23	c	24	b	25	a		